top of page

Face Detection using Haar Cascades - OpenCV-Python

Nirav Mistry

Object Detection using Haar feature-based cascade classifiers is an effective object detection method proposed by Paul Viola and Michael Jones in their paper, “Rapid Object Detection using a Boosted Cascade of Simple Features” in 2001. It is a Machine Learning based approach where a cascade function is trained from a lot of positive and negative images. It is then used to detect objects in other images.


Here we will work with face detection. Initially, the algorithm needs a lot of positive images (images of faces) and negative images (images without faces) to train the classifier. Then we need to extract features from it.


We will use pre-defined haarcascade.

You can find the list of haarcascade XML files from this link -https://github.com/Itseez/opencv/tree/master/data/haarcascades


Here we will use haarcascade_frontalface_default.xml which can be found on https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml and haarcascade_eye.xml which can be found on https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_eye.xml


First we need to load the required XML classifiers. Then load our input image (or video) in grayscale mode.


import numpy as np
import cv2

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')

img = cv2.imread('img.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

Now we find the faces in the image. If faces are found, it returns the positions of detected faces as Rect(x,y,w,h). Once we get these locations, we can create a ROI for the face and apply eye detection on this ROI (since eyes are always on the face !!! ).


faces = face_cascade.detectMultiScale(gray, 1.3, 5)

    for (x, y, w, h) in faces:
        cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
        roi_gray = gray[y:y + h, x:x + w]
        roi_color = img[y:y + h, x:x + w]

        eyes = eye_cascade.detectMultiScale(roi_gray)
        for (ex, ey, ew, eh) in eyes:
            cv2.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2)

    cv2.imshow('img', img)
    k = cv2.waitKey(30) & 0xff
    if k == 27:
        break

cap.release()
cv2.destroyAllWindows()

The result looks like below:

Now we will detect a live face using a webcam.

Full code for video:


import numpy as np
import cv2

# multiple cascades: https://github.com/Itseez/opencv/tree/master/data/haarcascades

#https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
#https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_eye.xml
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')

cap = cv2.VideoCapture(0)

while 1:
    ret, img = cap.read()
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)

    for (x,y,w,h) in faces:
        cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
        roi_gray = gray[y:y+h, x:x+w]
        roi_color = img[y:y+h, x:x+w]
        
        eyes = eye_cascade.detectMultiScale(roi_gray)
        for (ex,ey,ew,eh) in eyes:
            cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)

    cv2.imshow('img',img)
    k = cv2.waitKey(30) & 0xff
    if k == 27:
        break

cap.release()
cv2.destroyAllWindows()

Output:




3,137 views

Recent Posts

See All
bottom of page